
How to effectively lead an inexperienced team of 
junior developers

1Web: www.educative.io/enterpriseenterprise@educative.io |12280 NE District Way - Bellevue, WA 98005

Good leadership requires good planning
Figure out what kind of team you have

Develop your team

Execution
Front-load decision-making
Break it down, barney style

Provide clarity on direction and where they fit

Supervise

Know when to loosen the reins

 

The technical junior
The process junior
The behavioral junior

Developing technical juniors
Developing process juniors
Developing behavioral juniors

Turn knowledge work into mechanical work
Teach them principles and rules of thumb
Teach them when to violate the principles 
and rules of thumb

Teach them their role
Set goals
Set boundaries

Frequently check-in
Ensure there’s a process
Give feedback often
Be patient

Developing behavioral juniors

Developing behavioral juniors is the most challenging. 
Change comes from within, and asking someone to 
change their behavior can be a fool’s errand.

The behavioral junior can lack the self-awareness to 
recognize their flaws, exhibits defensiveness when 
criticized, or allows pride or ego to prevent them from 
making progress.

Pointing out behavioral flaws is also one of the hardest 
subjects for most leads to broach. People have a natural 
aversion to directly criticizing others, and a lack of control 
over emotions can turn a potential teaching moment into 
a heated argument.

Developing junior developers with behavioral traits you’d 
like to change comes down:

Changing behavior is a long-term game even in the best 
scenarios. Sometimes you won’t have the runway to wait 
for that change to occur. In these cases, it’s best to cut 
your losses.

Execution
While the best executing teams have clarity, competency, 
and control, providing a team of junior developers full 
autonomy is a recipe for disaster. It leads to poor 
decisions, which leads to broken systems and negative 
effectiveness as you work to undo the damage and pay 
down the tremendous amount of technical debt they 
generate.

As a leader it is your responsibility to give junior 
developers room to grow and potentially fail, but not room 
to sink the ship. It requires careful calibration between 
freedom and restriction. While learning can’t happen 
without mistakes and failure, it’s your job to ensure the 
mistakes junior developers make are survivable.

Develop your team
Once you’ve conducted an honest assessment of your 
team’s individual strengths and weaknesses, you can 
make plans that take their strengths and weaknesses 
into account as individuals and as a team.

Developing technical juniors

Developing technical juniors is a matter of focused, 
targeted training. The goal is to build up their knowledge 
and experience of the fundamentals until it becomes 
unconsciously known.

Develop a training program that conducts focused, 
targeted instruction on the various technical aspects of 
the role. Provide real-life examples when possible. 
Conduct drills, leverage the power of repetition, and 
ensure the fundamentals are mastered.

Developing process juniors

Developing process juniors is a matter of ensuring two 
things are understood:

Some process juniors simply don’t know a better way, 
and once exposed to it are eager to follow the process.

Other process juniors may have a difficult time following 
any process, seeing them as unnecessary friction to 
accomplishing their goals. So-called “cowboy coders”, 
they likely haven’t experienced the pain the process 
prevents.

Describing why the process exists and the consequences 
of not following the process in detail can help align their 
behaviors. If they still fail to follow the process, 
establishing checkpoints, boundaries, and penalties can 
help align behavior.

Process juniors are often a source of tremendous 
initiative. With a fresh pair of eyes, they can bring in new 
efficiencies that challenge the status quo. However, their 
idealism must be balanced by the reality of the situation. 
Ensure they can follow the existing process first and 
appreciate why it exists before allowing them to 
introduce new processes and refinements.

Some juniors encompass all of the categories, while 
others may only need work in one or two areas. These 
categories aren’t mutually exclusive, and it’s important to 
understand what kind of junior you are dealing with so 
you can appropriately alter your approach.

The technical junior

The technical junior is a person that lacks the hard 
skillsets of the industry or role. It’s a fresh college 
graduate starting their first job, or someone making a 
mid-life career change.

Technical juniors do not have familiarity with the tools, 
techniques, and skills needed to perform competently. 
They require very conscious effort to do things that may 
otherwise be simple or subconsciously perform by more 
technically experienced members. They’re unable to make 
tradeoffs and good decisions because they don’t know 
what they don’t know.

The process junior

The process junior lacks the experience and skills 
working within a team. They may not understand the 
team culture, structure, dynamics. They lack context into 
the history of the team and how the team collaborates, 
coordinates, and communicates. Working with them is an 
act of friction.

The end result is chaos for the team.

The behavioral junior

The behavioral junior has personal character or 
behavioral deficits that keep them junior, despite how 
good they may otherwise be.

They may lack the initiative to take on work after they are 
done with their current work. They may not care to learn, 
only doing the barest minimum needed to complete their 
task. They may lack follow-through or have issues 
communicating. They may not have attention-to-detail. 
They may be unable to take constructive criticism. They 
may lack drive, initiative, or good judgment.

Whatever the issue is, it prevents them from operating at 
the level they need to operate at.

Teach them when to violate the principles 
and rules of thumb

Software engineering is a context-based profession. 
Decisions that may be terrible in one circumstance can be 
the right thing to do in another. It’s important that you 
teach junior developers the various decision-making 
tradeoffs and how to make the tradeoffs themselves.

This will help avoid turning them into dogmatic engineers 
who are incapable of adapting when needed.

Provide clarity on direction 
and where they fit
If you isolate junior developers and treat them as cogs in 
a machine, you prevent them from understanding their 
ultimate role in the project.

Without understanding their place in the bigger picture, 
they will become perpetual juniors, merely carrying out 
tasks and incapable of executing anything beyond simple, 
explicit instructions.

This may have been the end goal of Taylorist 
management, but the world has evolved in complexity 
since the philosophy’s heyday. Today, the best teams have 
the ability to adapt to a constantly changing environment.

The only way a team can adapt is if its members have a 
holistic view of the situation.

You don’t want junior developers staying junior forever.

Teach them their role

Explain to them the other moving parts in terms they can 
understand. Paint a picture of how their contribution (or 
lack thereof) impacts the overall goals and initiatives of 
the project and organization.

As junior developers improve, their understanding of their 
role will help guide them as they take on increasing 
amounts of responsibility. These guide-rails will focus 
their efforts on the things that matter and help ensure 
they execute within the constraints that makes sense for 
the team and organization.

Figure out what kind of 
team you have
The terms “inexperienced” and “junior” can be incredibly 
broads labels.

A person can be great at one thing but junior in another. 
Identifying where your team’s individual strengths and 
weaknesses lie is therefore the key first step in leading 
them.

Make a skills matrix, listing the various skills an individual 
would need to succeed in your endeavor. Be sure to list 
soft-skills like communication, the ability to work with 
others, and whether they encompass the values and traits 
of your organization. These are just as important as hard, 
technical skills.

After you rate them, you’ll notice that the juniors can fall 
into certain categories.

Figure out what kind of 
team you have
The terms “inexperienced” and “junior” can be incredibly 
broads labels.

A person can be great at one thing but junior in another. 
Identifying where your team’s individual strengths and 
weaknesses lie is therefore the key first step in leading 
them.

Make a skills matrix, listing the various skills an individual 
would need to succeed in your endeavor. Be sure to list 
soft-skills like communication, the ability to work with 
others, and whether they encompass the values and traits 
of your organization. These are just as important as hard, 
technical skills.

After you rate them, you’ll notice that the juniors can fall 
into certain categories.

Leading a team of inexperienced juniors is challenging but rewarding.

Many leaders struggle and eventually throw in the towel when being 
placed in charge of a team full of inexperienced members. They often 
become overwhelmed by the lack of skill available to their team. Like 
pushing against a rope, they make no progress towards goals and may 
even may even make negative progress.

Leaders stuck in this situation may blame their team, forgetting the 
mantra that “there are no bad teams, only bad leaders.” Though often 
well-intentioned and otherwise talented, these leaders end up flailing in 
their role.

Eventually they either burn out or are replaced due to their poor 
performance.

It doesn’t have to be this way.

Inexperienced teams can perform incredibly well when guided by the 
right leadership. They can even perform better than a team full of 
experienced members under poor leadership.

Leading a team of inexperienced juniors is challenging but rewarding.

Many leaders struggle and eventually throw in the towel when being 
placed in charge of a team full of inexperienced members. They often 
become overwhelmed by the lack of skill available to their team. Like 
pushing against a rope, they make no progress towards goals and may 
even may even make negative progress.

Leaders stuck in this situation may blame their team, forgetting the 
mantra that “there are no bad teams, only bad leaders.” Though often 
well-intentioned and otherwise talented, these leaders end up flailing in 
their role.

Eventually they either burn out or are replaced due to their poor 
performance.

It doesn’t have to be this way.

Inexperienced teams can perform incredibly well when guided by the 
right leadership. They can even perform better than a team full of 
experienced members under poor leadership.

Good leadership requires 
good planning
A lot of leads simply go with the flow, performing ad-hoc 
interventions on an as-needed basis to lead their team. 
They call out mistakes as they see them, give pats on the 
back here and there, and otherwise wonder why their 
teams fail.

Their freewheeling attempts to tackle problems as they 
come results in a lack of focus, reducing the 
effectiveness of the team as they work on efforts that 
don’t synergistically build on each other.

A failure to plan is a plan to fail. Good leadership requires 
planning and follow-through, while understanding that no 
plan survives contact with reality. As a leader it’s your 
responsibility to create a solid plan and be prepared for 
any contingencies, adapting accordingly to changing 
conditions.

The following plan should help you.

Good leadership requires 
good planning
A lot of leads simply go with the flow, performing ad-hoc 
interventions on an as-needed basis to lead their team. 
They call out mistakes as they see them, give pats on the 
back here and there, and otherwise wonder why their 
teams fail.

Their freewheeling attempts to tackle problems as they 
come results in a lack of focus, reducing the 
effectiveness of the team as they work on efforts that 
don’t synergistically build on each other.

A failure to plan is a plan to fail. Good leadership requires 
planning and follow-through, while understanding that no 
plan survives contact with reality. As a leader it’s your 
responsibility to create a solid plan and be prepared for 
any contingencies, adapting accordingly to changing 
conditions.

The following plan should help you.

Supervise
It’s not enough to set the pieces and press “play”. Good 
execution requires supervision. Course-correction and 
pointing out just-in-time lessons are valuable learning 
opportunities that leaders need to provide to junior 
developers.

Frequently check-in

Monitor progress and check in frequently with your junior 
developers on their growth. Constantly assess where they 
are and ensure they are making progress. Check progress 
against goals and milestones.

Provide them resources they need to learn — whether that 
be training materials, larger challenges, or your own time.

Ensure they know where they stand and where they are 
expected to be, and have the roadmap to get there.

Ensure there’s a process

Junior developers don’t do well when given an infinite 
amount of possibilities, and a tremendous amount of 
damage can be done over time if you leave them to their 
own devices.

Limit potential damage by ensuring that there’s a gated 
process where you have final authority. Ensure that 
there’s a code review process in place. Only allow 
deployments that you approve.

If your developers have trouble following the process, 
enforce it with technical solutions or management 
penalties.

These processes can be lifted as your junior developers 
grow and improve, but until then they act as safety nets 
that prevent harm to themselves and the business.

Give feedback often

Junior developers thrive when given feedback. They need 
this constant course correction, both to ensure they don’t 
sink the ship and to ensure they are learning the right 
things. Over time, they can begin giving themselves this 
feedback, providing them the ability to self-regulate once 
they are capable of doing so. This will ultimately ease the 
burden on you as a manager or lead.

Set goals

Focus and effective execution requires a goal or objective 
to work towards.

Work with your team to set attainable goals at regular 
intervals. These goals should be larger goals your team 
works towards, as well as individual goals that contribute 
to the main effort. By having your team work with you on 
deciding these goals, it improves their buy-in and 
motivation, increasing engagement.

Ensure you also establish milestones and interim goals 
that can serve as progress markers and checkpoints to 
determine whether the entire effort is on track and where 
attention may be needed.

These act as yellow flags and early warning signs of 
potential issues that need to be addressed.

Set boundaries

It’s not enough to set goals — goals can be achieved in 
many ways, some highly negative and damaging, 
especially if the junior developer hasn’t yet developed 
proper judgement. It’s important to ensure that 
boundaries are explicitly clarified and understood by the 
entire team.

Boundaries can be situation-specific things like “never use 
single-letter variables” to generalized value-based 
boundaries like “never make a customer feel bad”.

These boundaries act as anti-goals, things that should 
not be done, and are important in establishing what is 
accepted and not accepted behavior. Norm-setting is 
important in creating alignment and clarity, and without it 
you can end up with a team that achieves its goals, but in 
a chaotic and destructive way.

As your junior developers improve their judgement and 
prove credibility, you can start lifting boundaries and 
widening their area of operation.

Front-load decision-making
Junior developers by definition don’t have the clarity or 
competency to utilize good judgement when they make 
decisions. It’s important to ensure that major decisions, 
such as architecture, technologies, and patterns, are not 
initially in their purview.

This means that when starting a new feature or module, 
make the major decisions ahead of time. They should be 
working within a framework of established patterns, 
practices, architectures, technologies, and procedures. If 
this doctrine doesn’t exist, create it.

Ensure this framework exists before they reach the point 
where they have to make these decisions themselves. 
Train them on the patterns and practices. Create 
component libraries. Demonstrate the way you want the 
system built.

Front-loading major decisions has the added benefit of 
helping junior developers avoid decision fatigue. They 
avoid making decisions they don’t have the competency 
or clarity to make, and focus their decision-making at the 
micro-level that they are gaining mastery over: naming, 
variables, etc.

Making the major decisions doesn’t mean completely 
shutting off a junior developer’s viewpoint or voice. Junior 
developers can introduce new ideas and help keep your 
organization from becoming an antiquated dinosaur. 
However, balance their new ideas with the risks and 
realities of your organization.

Give them visibility into the thought processes behind 
your decisions so they can build up their own ability to 
judge trade-offs. Ask for their input, but ensure that the 
final decision itself remains with you.

By front-loading the decisions before they reach the 
decision-point, it helps focus junior developers during 
execution.

Break it down, barney style
Junior developers may have knowledge of individual 
pieces, but lack the intuition and experience that allows 
them to apply their pattern-recognition skills to other 
situations. As a result, they’re unable to rapidly move 
outside their areas of comfort and knowledge, even if the 
work is very similar.

Junior developers won’t recognize a rose by any other 
name, even if it looks as pretty or smells just as sweet.

Turn knowledge work into mechanical work

For junior developers who haven’t mastered the 
fundamentals and basics, it’s imperative to break down 
their work and provide step-by-step instructions. They 
need to learn to crawl before they learn to run.

Be as explicit as possible. Perform drills, going step by 
step over setting up a class or calling a method. Ensure 
they achieve mastery over the building blocks and 
fundamentals before having them attempt anything else.

Once they begin achieving competency with their tools, 
you can move on to working with them on integrating 
their fundamentals into the larger effort.

Teach them principles and rules of thumb

As junior developers learn the basics, you can start 
explaining the “why” behind the techniques.

Explain the principles that form the foundation and 
reasoning behind what they are doing. Give them rules of 
thumb they can generally reliably follow. As they execute 
their day-to-day work, provide course-correction on where 
the principles are violated and how they can change their 
work to remediate the defects.

Over time, they will learn to apply these principles 
themselves without being told to. They’ll come to develop 
their own heuristics, which are critical to being able to 
apply what they are doing to other similar situations.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Be patient

No learning can be done without the possibility of failure. 
Accept that your junior developers will fail, or seemingly 
backslide on progress.

Act as necessary, but understand that punishing failures 
doesn’t stop them, it simply hides them. Sometimes you’ll 
have to let certain areas fail while you focus growth and 
attention on a more important area.

Failure is a part of the process of growing and learning. 
Be patient.

Know when to loosen the reins
Over time, junior developers will get better. The sort of 
managing that helped them initially will start to feel more 
constraining, dampening effectiveness and morale. It’s 
important as a lead to know when to loosen the reins and 
provide more autonomy and less supervision.

Keep a pulse of how junior developers grow and make 
progress. You can’t track what you don’t measure, so 
maintain a checklist of the traits, skills, knowledge you 
want them to demonstrate. Reward progress with more 
autonomy and trust.

Leading a team of junior developers is difficult but 
rewarding. As they learn and grow, the team will gel over 
the shared challenge and become more and more 
effective over time.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Written by: Joseph Gefroh, Director of Engineering at HealthSherpa



2Web: www.educative.io/enterpriseenterprise@educative.io |12280 NE District Way - Bellevue, WA 98005

Developing behavioral juniors

Developing behavioral juniors is the most challenging. 
Change comes from within, and asking someone to 
change their behavior can be a fool’s errand.

The behavioral junior can lack the self-awareness to 
recognize their flaws, exhibits defensiveness when 
criticized, or allows pride or ego to prevent them from 
making progress.

Pointing out behavioral flaws is also one of the hardest 
subjects for most leads to broach. People have a natural 
aversion to directly criticizing others, and a lack of control 
over emotions can turn a potential teaching moment into 
a heated argument.

Developing junior developers with behavioral traits you’d 
like to change comes down:

Changing behavior is a long-term game even in the best 
scenarios. Sometimes you won’t have the runway to wait 
for that change to occur. In these cases, it’s best to cut 
your losses.

Execution
While the best executing teams have clarity, competency, 
and control, providing a team of junior developers full 
autonomy is a recipe for disaster. It leads to poor 
decisions, which leads to broken systems and negative 
effectiveness as you work to undo the damage and pay 
down the tremendous amount of technical debt they 
generate.

As a leader it is your responsibility to give junior 
developers room to grow and potentially fail, but not room 
to sink the ship. It requires careful calibration between 
freedom and restriction. While learning can’t happen 
without mistakes and failure, it’s your job to ensure the 
mistakes junior developers make are survivable.

Develop your team
Once you’ve conducted an honest assessment of your 
team’s individual strengths and weaknesses, you can 
make plans that take their strengths and weaknesses 
into account as individuals and as a team.

Developing technical juniors

Developing technical juniors is a matter of focused, 
targeted training. The goal is to build up their knowledge 
and experience of the fundamentals until it becomes 
unconsciously known.

Develop a training program that conducts focused, 
targeted instruction on the various technical aspects of 
the role. Provide real-life examples when possible. 
Conduct drills, leverage the power of repetition, and 
ensure the fundamentals are mastered.

Developing process juniors

Developing process juniors is a matter of ensuring two 
things are understood:

Some process juniors simply don’t know a better way, 
and once exposed to it are eager to follow the process.

Other process juniors may have a difficult time following 
any process, seeing them as unnecessary friction to 
accomplishing their goals. So-called “cowboy coders”, 
they likely haven’t experienced the pain the process 
prevents.

Describing why the process exists and the consequences 
of not following the process in detail can help align their 
behaviors. If they still fail to follow the process, 
establishing checkpoints, boundaries, and penalties can 
help align behavior.

Process juniors are often a source of tremendous 
initiative. With a fresh pair of eyes, they can bring in new 
efficiencies that challenge the status quo. However, their 
idealism must be balanced by the reality of the situation. 
Ensure they can follow the existing process first and 
appreciate why it exists before allowing them to 
introduce new processes and refinements.

Some juniors encompass all of the categories, while 
others may only need work in one or two areas. These 
categories aren’t mutually exclusive, and it’s important to 
understand what kind of junior you are dealing with so 
you can appropriately alter your approach.

The technical junior

The technical junior is a person that lacks the hard 
skillsets of the industry or role. It’s a fresh college 
graduate starting their first job, or someone making a 
mid-life career change.

Technical juniors do not have familiarity with the tools, 
techniques, and skills needed to perform competently. 
They require very conscious effort to do things that may 
otherwise be simple or subconsciously perform by more 
technically experienced members. They’re unable to make 
tradeoffs and good decisions because they don’t know 
what they don’t know.

The process junior

The process junior lacks the experience and skills 
working within a team. They may not understand the 
team culture, structure, dynamics. They lack context into 
the history of the team and how the team collaborates, 
coordinates, and communicates. Working with them is an 
act of friction.

The end result is chaos for the team.

The behavioral junior

The behavioral junior has personal character or 
behavioral deficits that keep them junior, despite how 
good they may otherwise be.

They may lack the initiative to take on work after they are 
done with their current work. They may not care to learn, 
only doing the barest minimum needed to complete their 
task. They may lack follow-through or have issues 
communicating. They may not have attention-to-detail. 
They may be unable to take constructive criticism. They 
may lack drive, initiative, or good judgment.

Whatever the issue is, it prevents them from operating at 
the level they need to operate at.

The process itself
The reason why the process exists

Teach them when to violate the principles 
and rules of thumb

Software engineering is a context-based profession. 
Decisions that may be terrible in one circumstance can be 
the right thing to do in another. It’s important that you 
teach junior developers the various decision-making 
tradeoffs and how to make the tradeoffs themselves.

This will help avoid turning them into dogmatic engineers 
who are incapable of adapting when needed.

Provide clarity on direction 
and where they fit
If you isolate junior developers and treat them as cogs in 
a machine, you prevent them from understanding their 
ultimate role in the project.

Without understanding their place in the bigger picture, 
they will become perpetual juniors, merely carrying out 
tasks and incapable of executing anything beyond simple, 
explicit instructions.

This may have been the end goal of Taylorist 
management, but the world has evolved in complexity 
since the philosophy’s heyday. Today, the best teams have 
the ability to adapt to a constantly changing environment.

The only way a team can adapt is if its members have a 
holistic view of the situation.

You don’t want junior developers staying junior forever.

Teach them their role

Explain to them the other moving parts in terms they can 
understand. Paint a picture of how their contribution (or 
lack thereof) impacts the overall goals and initiatives of 
the project and organization.

As junior developers improve, their understanding of their 
role will help guide them as they take on increasing 
amounts of responsibility. These guide-rails will focus 
their efforts on the things that matter and help ensure 
they execute within the constraints that makes sense for 
the team and organization.

Supervise
It’s not enough to set the pieces and press “play”. Good 
execution requires supervision. Course-correction and 
pointing out just-in-time lessons are valuable learning 
opportunities that leaders need to provide to junior 
developers.

Frequently check-in

Monitor progress and check in frequently with your junior 
developers on their growth. Constantly assess where they 
are and ensure they are making progress. Check progress 
against goals and milestones.

Provide them resources they need to learn — whether that 
be training materials, larger challenges, or your own time.

Ensure they know where they stand and where they are 
expected to be, and have the roadmap to get there.

Ensure there’s a process

Junior developers don’t do well when given an infinite 
amount of possibilities, and a tremendous amount of 
damage can be done over time if you leave them to their 
own devices.

Limit potential damage by ensuring that there’s a gated 
process where you have final authority. Ensure that 
there’s a code review process in place. Only allow 
deployments that you approve.

If your developers have trouble following the process, 
enforce it with technical solutions or management 
penalties.

These processes can be lifted as your junior developers 
grow and improve, but until then they act as safety nets 
that prevent harm to themselves and the business.

Give feedback often

Junior developers thrive when given feedback. They need 
this constant course correction, both to ensure they don’t 
sink the ship and to ensure they are learning the right 
things. Over time, they can begin giving themselves this 
feedback, providing them the ability to self-regulate once 
they are capable of doing so. This will ultimately ease the 
burden on you as a manager or lead.

Set goals

Focus and effective execution requires a goal or objective 
to work towards.

Work with your team to set attainable goals at regular 
intervals. These goals should be larger goals your team 
works towards, as well as individual goals that contribute 
to the main effort. By having your team work with you on 
deciding these goals, it improves their buy-in and 
motivation, increasing engagement.

Ensure you also establish milestones and interim goals 
that can serve as progress markers and checkpoints to 
determine whether the entire effort is on track and where 
attention may be needed.

These act as yellow flags and early warning signs of 
potential issues that need to be addressed.

Set boundaries

It’s not enough to set goals — goals can be achieved in 
many ways, some highly negative and damaging, 
especially if the junior developer hasn’t yet developed 
proper judgement. It’s important to ensure that 
boundaries are explicitly clarified and understood by the 
entire team.

Boundaries can be situation-specific things like “never use 
single-letter variables” to generalized value-based 
boundaries like “never make a customer feel bad”.

These boundaries act as anti-goals, things that should 
not be done, and are important in establishing what is 
accepted and not accepted behavior. Norm-setting is 
important in creating alignment and clarity, and without it 
you can end up with a team that achieves its goals, but in 
a chaotic and destructive way.

As your junior developers improve their judgement and 
prove credibility, you can start lifting boundaries and 
widening their area of operation.

Front-load decision-making
Junior developers by definition don’t have the clarity or 
competency to utilize good judgement when they make 
decisions. It’s important to ensure that major decisions, 
such as architecture, technologies, and patterns, are not 
initially in their purview.

This means that when starting a new feature or module, 
make the major decisions ahead of time. They should be 
working within a framework of established patterns, 
practices, architectures, technologies, and procedures. If 
this doctrine doesn’t exist, create it.

Ensure this framework exists before they reach the point 
where they have to make these decisions themselves. 
Train them on the patterns and practices. Create 
component libraries. Demonstrate the way you want the 
system built.

Front-loading major decisions has the added benefit of 
helping junior developers avoid decision fatigue. They 
avoid making decisions they don’t have the competency 
or clarity to make, and focus their decision-making at the 
micro-level that they are gaining mastery over: naming, 
variables, etc.

Making the major decisions doesn’t mean completely 
shutting off a junior developer’s viewpoint or voice. Junior 
developers can introduce new ideas and help keep your 
organization from becoming an antiquated dinosaur. 
However, balance their new ideas with the risks and 
realities of your organization.

Give them visibility into the thought processes behind 
your decisions so they can build up their own ability to 
judge trade-offs. Ask for their input, but ensure that the 
final decision itself remains with you.

By front-loading the decisions before they reach the 
decision-point, it helps focus junior developers during 
execution.

Break it down, barney style
Junior developers may have knowledge of individual 
pieces, but lack the intuition and experience that allows 
them to apply their pattern-recognition skills to other 
situations. As a result, they’re unable to rapidly move 
outside their areas of comfort and knowledge, even if the 
work is very similar.

Junior developers won’t recognize a rose by any other 
name, even if it looks as pretty or smells just as sweet.

Turn knowledge work into mechanical work

For junior developers who haven’t mastered the 
fundamentals and basics, it’s imperative to break down 
their work and provide step-by-step instructions. They 
need to learn to crawl before they learn to run.

Be as explicit as possible. Perform drills, going step by 
step over setting up a class or calling a method. Ensure 
they achieve mastery over the building blocks and 
fundamentals before having them attempt anything else.

Once they begin achieving competency with their tools, 
you can move on to working with them on integrating 
their fundamentals into the larger effort.

Teach them principles and rules of thumb

As junior developers learn the basics, you can start 
explaining the “why” behind the techniques.

Explain the principles that form the foundation and 
reasoning behind what they are doing. Give them rules of 
thumb they can generally reliably follow. As they execute 
their day-to-day work, provide course-correction on where 
the principles are violated and how they can change their 
work to remediate the defects.

Over time, they will learn to apply these principles 
themselves without being told to. They’ll come to develop 
their own heuristics, which are critical to being able to 
apply what they are doing to other similar situations.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Be patient

No learning can be done without the possibility of failure. 
Accept that your junior developers will fail, or seemingly 
backslide on progress.

Act as necessary, but understand that punishing failures 
doesn’t stop them, it simply hides them. Sometimes you’ll 
have to let certain areas fail while you focus growth and 
attention on a more important area.

Failure is a part of the process of growing and learning. 
Be patient.

Know when to loosen the reins
Over time, junior developers will get better. The sort of 
managing that helped them initially will start to feel more 
constraining, dampening effectiveness and morale. It’s 
important as a lead to know when to loosen the reins and 
provide more autonomy and less supervision.

Keep a pulse of how junior developers grow and make 
progress. You can’t track what you don’t measure, so 
maintain a checklist of the traits, skills, knowledge you 
want them to demonstrate. Reward progress with more 
autonomy and trust.

Leading a team of junior developers is difficult but 
rewarding. As they learn and grow, the team will gel over 
the shared challenge and become more and more 
effective over time.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.



3Web: www.educative.io/enterpriseenterprise@educative.io |12280 NE District Way - Bellevue, WA 98005

Developing behavioral juniors

Developing behavioral juniors is the most challenging. 
Change comes from within, and asking someone to 
change their behavior can be a fool’s errand.

The behavioral junior can lack the self-awareness to 
recognize their flaws, exhibits defensiveness when 
criticized, or allows pride or ego to prevent them from 
making progress.

Pointing out behavioral flaws is also one of the hardest 
subjects for most leads to broach. People have a natural 
aversion to directly criticizing others, and a lack of control 
over emotions can turn a potential teaching moment into 
a heated argument.

Developing junior developers with behavioral traits you’d 
like to change comes down:

Changing behavior is a long-term game even in the best 
scenarios. Sometimes you won’t have the runway to wait 
for that change to occur. In these cases, it’s best to cut 
your losses.

Execution
While the best executing teams have clarity, competency, 
and control, providing a team of junior developers full 
autonomy is a recipe for disaster. It leads to poor 
decisions, which leads to broken systems and negative 
effectiveness as you work to undo the damage and pay 
down the tremendous amount of technical debt they 
generate.

As a leader it is your responsibility to give junior 
developers room to grow and potentially fail, but not room 
to sink the ship. It requires careful calibration between 
freedom and restriction. While learning can’t happen 
without mistakes and failure, it’s your job to ensure the 
mistakes junior developers make are survivable.

Develop your team
Once you’ve conducted an honest assessment of your 
team’s individual strengths and weaknesses, you can 
make plans that take their strengths and weaknesses 
into account as individuals and as a team.

Developing technical juniors

Developing technical juniors is a matter of focused, 
targeted training. The goal is to build up their knowledge 
and experience of the fundamentals until it becomes 
unconsciously known.

Develop a training program that conducts focused, 
targeted instruction on the various technical aspects of 
the role. Provide real-life examples when possible. 
Conduct drills, leverage the power of repetition, and 
ensure the fundamentals are mastered.

Developing process juniors

Developing process juniors is a matter of ensuring two 
things are understood:

Some process juniors simply don’t know a better way, 
and once exposed to it are eager to follow the process.

Other process juniors may have a difficult time following 
any process, seeing them as unnecessary friction to 
accomplishing their goals. So-called “cowboy coders”, 
they likely haven’t experienced the pain the process 
prevents.

Describing why the process exists and the consequences 
of not following the process in detail can help align their 
behaviors. If they still fail to follow the process, 
establishing checkpoints, boundaries, and penalties can 
help align behavior.

Process juniors are often a source of tremendous 
initiative. With a fresh pair of eyes, they can bring in new 
efficiencies that challenge the status quo. However, their 
idealism must be balanced by the reality of the situation. 
Ensure they can follow the existing process first and 
appreciate why it exists before allowing them to 
introduce new processes and refinements.

Some juniors encompass all of the categories, while 
others may only need work in one or two areas. These 
categories aren’t mutually exclusive, and it’s important to 
understand what kind of junior you are dealing with so 
you can appropriately alter your approach.

The technical junior

The technical junior is a person that lacks the hard 
skillsets of the industry or role. It’s a fresh college 
graduate starting their first job, or someone making a 
mid-life career change.

Technical juniors do not have familiarity with the tools, 
techniques, and skills needed to perform competently. 
They require very conscious effort to do things that may 
otherwise be simple or subconsciously perform by more 
technically experienced members. They’re unable to make 
tradeoffs and good decisions because they don’t know 
what they don’t know.

The process junior

The process junior lacks the experience and skills 
working within a team. They may not understand the 
team culture, structure, dynamics. They lack context into 
the history of the team and how the team collaborates, 
coordinates, and communicates. Working with them is an 
act of friction.

The end result is chaos for the team.

The behavioral junior

The behavioral junior has personal character or 
behavioral deficits that keep them junior, despite how 
good they may otherwise be.

They may lack the initiative to take on work after they are 
done with their current work. They may not care to learn, 
only doing the barest minimum needed to complete their 
task. They may lack follow-through or have issues 
communicating. They may not have attention-to-detail. 
They may be unable to take constructive criticism. They 
may lack drive, initiative, or good judgment.

Whatever the issue is, it prevents them from operating at 
the level they need to operate at.

Clarifying which specific behavioral traits you’d 
like to see and why
Demonstrating those traits yourself
Explicitly pointing out when those traits were or 
were not demonstrated
Monitoring and holding juniors accountable for 
their progress

Teach them when to violate the principles 
and rules of thumb

Software engineering is a context-based profession. 
Decisions that may be terrible in one circumstance can be 
the right thing to do in another. It’s important that you 
teach junior developers the various decision-making 
tradeoffs and how to make the tradeoffs themselves.

This will help avoid turning them into dogmatic engineers 
who are incapable of adapting when needed.

Provide clarity on direction 
and where they fit
If you isolate junior developers and treat them as cogs in 
a machine, you prevent them from understanding their 
ultimate role in the project.

Without understanding their place in the bigger picture, 
they will become perpetual juniors, merely carrying out 
tasks and incapable of executing anything beyond simple, 
explicit instructions.

This may have been the end goal of Taylorist 
management, but the world has evolved in complexity 
since the philosophy’s heyday. Today, the best teams have 
the ability to adapt to a constantly changing environment.

The only way a team can adapt is if its members have a 
holistic view of the situation.

You don’t want junior developers staying junior forever.

Teach them their role

Explain to them the other moving parts in terms they can 
understand. Paint a picture of how their contribution (or 
lack thereof) impacts the overall goals and initiatives of 
the project and organization.

As junior developers improve, their understanding of their 
role will help guide them as they take on increasing 
amounts of responsibility. These guide-rails will focus 
their efforts on the things that matter and help ensure 
they execute within the constraints that makes sense for 
the team and organization.

Supervise
It’s not enough to set the pieces and press “play”. Good 
execution requires supervision. Course-correction and 
pointing out just-in-time lessons are valuable learning 
opportunities that leaders need to provide to junior 
developers.

Frequently check-in

Monitor progress and check in frequently with your junior 
developers on their growth. Constantly assess where they 
are and ensure they are making progress. Check progress 
against goals and milestones.

Provide them resources they need to learn — whether that 
be training materials, larger challenges, or your own time.

Ensure they know where they stand and where they are 
expected to be, and have the roadmap to get there.

Ensure there’s a process

Junior developers don’t do well when given an infinite 
amount of possibilities, and a tremendous amount of 
damage can be done over time if you leave them to their 
own devices.

Limit potential damage by ensuring that there’s a gated 
process where you have final authority. Ensure that 
there’s a code review process in place. Only allow 
deployments that you approve.

If your developers have trouble following the process, 
enforce it with technical solutions or management 
penalties.

These processes can be lifted as your junior developers 
grow and improve, but until then they act as safety nets 
that prevent harm to themselves and the business.

Give feedback often

Junior developers thrive when given feedback. They need 
this constant course correction, both to ensure they don’t 
sink the ship and to ensure they are learning the right 
things. Over time, they can begin giving themselves this 
feedback, providing them the ability to self-regulate once 
they are capable of doing so. This will ultimately ease the 
burden on you as a manager or lead.

Set goals

Focus and effective execution requires a goal or objective 
to work towards.

Work with your team to set attainable goals at regular 
intervals. These goals should be larger goals your team 
works towards, as well as individual goals that contribute 
to the main effort. By having your team work with you on 
deciding these goals, it improves their buy-in and 
motivation, increasing engagement.

Ensure you also establish milestones and interim goals 
that can serve as progress markers and checkpoints to 
determine whether the entire effort is on track and where 
attention may be needed.

These act as yellow flags and early warning signs of 
potential issues that need to be addressed.

Set boundaries

It’s not enough to set goals — goals can be achieved in 
many ways, some highly negative and damaging, 
especially if the junior developer hasn’t yet developed 
proper judgement. It’s important to ensure that 
boundaries are explicitly clarified and understood by the 
entire team.

Boundaries can be situation-specific things like “never use 
single-letter variables” to generalized value-based 
boundaries like “never make a customer feel bad”.

These boundaries act as anti-goals, things that should 
not be done, and are important in establishing what is 
accepted and not accepted behavior. Norm-setting is 
important in creating alignment and clarity, and without it 
you can end up with a team that achieves its goals, but in 
a chaotic and destructive way.

As your junior developers improve their judgement and 
prove credibility, you can start lifting boundaries and 
widening their area of operation.

Front-load decision-making
Junior developers by definition don’t have the clarity or 
competency to utilize good judgement when they make 
decisions. It’s important to ensure that major decisions, 
such as architecture, technologies, and patterns, are not 
initially in their purview.

This means that when starting a new feature or module, 
make the major decisions ahead of time. They should be 
working within a framework of established patterns, 
practices, architectures, technologies, and procedures. If 
this doctrine doesn’t exist, create it.

Ensure this framework exists before they reach the point 
where they have to make these decisions themselves. 
Train them on the patterns and practices. Create 
component libraries. Demonstrate the way you want the 
system built.

Front-loading major decisions has the added benefit of 
helping junior developers avoid decision fatigue. They 
avoid making decisions they don’t have the competency 
or clarity to make, and focus their decision-making at the 
micro-level that they are gaining mastery over: naming, 
variables, etc.

Making the major decisions doesn’t mean completely 
shutting off a junior developer’s viewpoint or voice. Junior 
developers can introduce new ideas and help keep your 
organization from becoming an antiquated dinosaur. 
However, balance their new ideas with the risks and 
realities of your organization.

Give them visibility into the thought processes behind 
your decisions so they can build up their own ability to 
judge trade-offs. Ask for their input, but ensure that the 
final decision itself remains with you.

By front-loading the decisions before they reach the 
decision-point, it helps focus junior developers during 
execution.

Break it down, barney style
Junior developers may have knowledge of individual 
pieces, but lack the intuition and experience that allows 
them to apply their pattern-recognition skills to other 
situations. As a result, they’re unable to rapidly move 
outside their areas of comfort and knowledge, even if the 
work is very similar.

Junior developers won’t recognize a rose by any other 
name, even if it looks as pretty or smells just as sweet.

Turn knowledge work into mechanical work

For junior developers who haven’t mastered the 
fundamentals and basics, it’s imperative to break down 
their work and provide step-by-step instructions. They 
need to learn to crawl before they learn to run.

Be as explicit as possible. Perform drills, going step by 
step over setting up a class or calling a method. Ensure 
they achieve mastery over the building blocks and 
fundamentals before having them attempt anything else.

Once they begin achieving competency with their tools, 
you can move on to working with them on integrating 
their fundamentals into the larger effort.

Teach them principles and rules of thumb

As junior developers learn the basics, you can start 
explaining the “why” behind the techniques.

Explain the principles that form the foundation and 
reasoning behind what they are doing. Give them rules of 
thumb they can generally reliably follow. As they execute 
their day-to-day work, provide course-correction on where 
the principles are violated and how they can change their 
work to remediate the defects.

Over time, they will learn to apply these principles 
themselves without being told to. They’ll come to develop 
their own heuristics, which are critical to being able to 
apply what they are doing to other similar situations.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Be patient

No learning can be done without the possibility of failure. 
Accept that your junior developers will fail, or seemingly 
backslide on progress.

Act as necessary, but understand that punishing failures 
doesn’t stop them, it simply hides them. Sometimes you’ll 
have to let certain areas fail while you focus growth and 
attention on a more important area.

Failure is a part of the process of growing and learning. 
Be patient.

Know when to loosen the reins
Over time, junior developers will get better. The sort of 
managing that helped them initially will start to feel more 
constraining, dampening effectiveness and morale. It’s 
important as a lead to know when to loosen the reins and 
provide more autonomy and less supervision.

Keep a pulse of how junior developers grow and make 
progress. You can’t track what you don’t measure, so 
maintain a checklist of the traits, skills, knowledge you 
want them to demonstrate. Reward progress with more 
autonomy and trust.

Leading a team of junior developers is difficult but 
rewarding. As they learn and grow, the team will gel over 
the shared challenge and become more and more 
effective over time.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.



4Web: www.educative.io/enterpriseenterprise@educative.io |12280 NE District Way - Bellevue, WA 98005

Developing behavioral juniors

Developing behavioral juniors is the most challenging. 
Change comes from within, and asking someone to 
change their behavior can be a fool’s errand.

The behavioral junior can lack the self-awareness to 
recognize their flaws, exhibits defensiveness when 
criticized, or allows pride or ego to prevent them from 
making progress.

Pointing out behavioral flaws is also one of the hardest 
subjects for most leads to broach. People have a natural 
aversion to directly criticizing others, and a lack of control 
over emotions can turn a potential teaching moment into 
a heated argument.

Developing junior developers with behavioral traits you’d 
like to change comes down:

Changing behavior is a long-term game even in the best 
scenarios. Sometimes you won’t have the runway to wait 
for that change to occur. In these cases, it’s best to cut 
your losses.

Execution
While the best executing teams have clarity, competency, 
and control, providing a team of junior developers full 
autonomy is a recipe for disaster. It leads to poor 
decisions, which leads to broken systems and negative 
effectiveness as you work to undo the damage and pay 
down the tremendous amount of technical debt they 
generate.

As a leader it is your responsibility to give junior 
developers room to grow and potentially fail, but not room 
to sink the ship. It requires careful calibration between 
freedom and restriction. While learning can’t happen 
without mistakes and failure, it’s your job to ensure the 
mistakes junior developers make are survivable.

Develop your team
Once you’ve conducted an honest assessment of your 
team’s individual strengths and weaknesses, you can 
make plans that take their strengths and weaknesses 
into account as individuals and as a team.

Developing technical juniors

Developing technical juniors is a matter of focused, 
targeted training. The goal is to build up their knowledge 
and experience of the fundamentals until it becomes 
unconsciously known.

Develop a training program that conducts focused, 
targeted instruction on the various technical aspects of 
the role. Provide real-life examples when possible. 
Conduct drills, leverage the power of repetition, and 
ensure the fundamentals are mastered.

Developing process juniors

Developing process juniors is a matter of ensuring two 
things are understood:

Some process juniors simply don’t know a better way, 
and once exposed to it are eager to follow the process.

Other process juniors may have a difficult time following 
any process, seeing them as unnecessary friction to 
accomplishing their goals. So-called “cowboy coders”, 
they likely haven’t experienced the pain the process 
prevents.

Describing why the process exists and the consequences 
of not following the process in detail can help align their 
behaviors. If they still fail to follow the process, 
establishing checkpoints, boundaries, and penalties can 
help align behavior.

Process juniors are often a source of tremendous 
initiative. With a fresh pair of eyes, they can bring in new 
efficiencies that challenge the status quo. However, their 
idealism must be balanced by the reality of the situation. 
Ensure they can follow the existing process first and 
appreciate why it exists before allowing them to 
introduce new processes and refinements.

Some juniors encompass all of the categories, while 
others may only need work in one or two areas. These 
categories aren’t mutually exclusive, and it’s important to 
understand what kind of junior you are dealing with so 
you can appropriately alter your approach.

The technical junior

The technical junior is a person that lacks the hard 
skillsets of the industry or role. It’s a fresh college 
graduate starting their first job, or someone making a 
mid-life career change.

Technical juniors do not have familiarity with the tools, 
techniques, and skills needed to perform competently. 
They require very conscious effort to do things that may 
otherwise be simple or subconsciously perform by more 
technically experienced members. They’re unable to make 
tradeoffs and good decisions because they don’t know 
what they don’t know.

The process junior

The process junior lacks the experience and skills 
working within a team. They may not understand the 
team culture, structure, dynamics. They lack context into 
the history of the team and how the team collaborates, 
coordinates, and communicates. Working with them is an 
act of friction.

The end result is chaos for the team.

The behavioral junior

The behavioral junior has personal character or 
behavioral deficits that keep them junior, despite how 
good they may otherwise be.

They may lack the initiative to take on work after they are 
done with their current work. They may not care to learn, 
only doing the barest minimum needed to complete their 
task. They may lack follow-through or have issues 
communicating. They may not have attention-to-detail. 
They may be unable to take constructive criticism. They 
may lack drive, initiative, or good judgment.

Whatever the issue is, it prevents them from operating at 
the level they need to operate at.

Teach them when to violate the principles 
and rules of thumb

Software engineering is a context-based profession. 
Decisions that may be terrible in one circumstance can be 
the right thing to do in another. It’s important that you 
teach junior developers the various decision-making 
tradeoffs and how to make the tradeoffs themselves.

This will help avoid turning them into dogmatic engineers 
who are incapable of adapting when needed.

Provide clarity on direction 
and where they fit
If you isolate junior developers and treat them as cogs in 
a machine, you prevent them from understanding their 
ultimate role in the project.

Without understanding their place in the bigger picture, 
they will become perpetual juniors, merely carrying out 
tasks and incapable of executing anything beyond simple, 
explicit instructions.

This may have been the end goal of Taylorist 
management, but the world has evolved in complexity 
since the philosophy’s heyday. Today, the best teams have 
the ability to adapt to a constantly changing environment.

The only way a team can adapt is if its members have a 
holistic view of the situation.

You don’t want junior developers staying junior forever.

Teach them their role

Explain to them the other moving parts in terms they can 
understand. Paint a picture of how their contribution (or 
lack thereof) impacts the overall goals and initiatives of 
the project and organization.

As junior developers improve, their understanding of their 
role will help guide them as they take on increasing 
amounts of responsibility. These guide-rails will focus 
their efforts on the things that matter and help ensure 
they execute within the constraints that makes sense for 
the team and organization.

Supervise
It’s not enough to set the pieces and press “play”. Good 
execution requires supervision. Course-correction and 
pointing out just-in-time lessons are valuable learning 
opportunities that leaders need to provide to junior 
developers.

Frequently check-in

Monitor progress and check in frequently with your junior 
developers on their growth. Constantly assess where they 
are and ensure they are making progress. Check progress 
against goals and milestones.

Provide them resources they need to learn — whether that 
be training materials, larger challenges, or your own time.

Ensure they know where they stand and where they are 
expected to be, and have the roadmap to get there.

Ensure there’s a process

Junior developers don’t do well when given an infinite 
amount of possibilities, and a tremendous amount of 
damage can be done over time if you leave them to their 
own devices.

Limit potential damage by ensuring that there’s a gated 
process where you have final authority. Ensure that 
there’s a code review process in place. Only allow 
deployments that you approve.

If your developers have trouble following the process, 
enforce it with technical solutions or management 
penalties.

These processes can be lifted as your junior developers 
grow and improve, but until then they act as safety nets 
that prevent harm to themselves and the business.

Give feedback often

Junior developers thrive when given feedback. They need 
this constant course correction, both to ensure they don’t 
sink the ship and to ensure they are learning the right 
things. Over time, they can begin giving themselves this 
feedback, providing them the ability to self-regulate once 
they are capable of doing so. This will ultimately ease the 
burden on you as a manager or lead.

Set goals

Focus and effective execution requires a goal or objective 
to work towards.

Work with your team to set attainable goals at regular 
intervals. These goals should be larger goals your team 
works towards, as well as individual goals that contribute 
to the main effort. By having your team work with you on 
deciding these goals, it improves their buy-in and 
motivation, increasing engagement.

Ensure you also establish milestones and interim goals 
that can serve as progress markers and checkpoints to 
determine whether the entire effort is on track and where 
attention may be needed.

These act as yellow flags and early warning signs of 
potential issues that need to be addressed.

Set boundaries

It’s not enough to set goals — goals can be achieved in 
many ways, some highly negative and damaging, 
especially if the junior developer hasn’t yet developed 
proper judgement. It’s important to ensure that 
boundaries are explicitly clarified and understood by the 
entire team.

Boundaries can be situation-specific things like “never use 
single-letter variables” to generalized value-based 
boundaries like “never make a customer feel bad”.

These boundaries act as anti-goals, things that should 
not be done, and are important in establishing what is 
accepted and not accepted behavior. Norm-setting is 
important in creating alignment and clarity, and without it 
you can end up with a team that achieves its goals, but in 
a chaotic and destructive way.

As your junior developers improve their judgement and 
prove credibility, you can start lifting boundaries and 
widening their area of operation.

Front-load decision-making
Junior developers by definition don’t have the clarity or 
competency to utilize good judgement when they make 
decisions. It’s important to ensure that major decisions, 
such as architecture, technologies, and patterns, are not 
initially in their purview.

This means that when starting a new feature or module, 
make the major decisions ahead of time. They should be 
working within a framework of established patterns, 
practices, architectures, technologies, and procedures. If 
this doctrine doesn’t exist, create it.

Ensure this framework exists before they reach the point 
where they have to make these decisions themselves. 
Train them on the patterns and practices. Create 
component libraries. Demonstrate the way you want the 
system built.

Front-loading major decisions has the added benefit of 
helping junior developers avoid decision fatigue. They 
avoid making decisions they don’t have the competency 
or clarity to make, and focus their decision-making at the 
micro-level that they are gaining mastery over: naming, 
variables, etc.

Making the major decisions doesn’t mean completely 
shutting off a junior developer’s viewpoint or voice. Junior 
developers can introduce new ideas and help keep your 
organization from becoming an antiquated dinosaur. 
However, balance their new ideas with the risks and 
realities of your organization.

Give them visibility into the thought processes behind 
your decisions so they can build up their own ability to 
judge trade-offs. Ask for their input, but ensure that the 
final decision itself remains with you.

By front-loading the decisions before they reach the 
decision-point, it helps focus junior developers during 
execution.

Upload internal documentation
Schedule tasks and meetings
Assign mentors
Add Educative courses
Monitor individual progress

Break it down, barney style
Junior developers may have knowledge of individual 
pieces, but lack the intuition and experience that allows 
them to apply their pattern-recognition skills to other 
situations. As a result, they’re unable to rapidly move 
outside their areas of comfort and knowledge, even if the 
work is very similar.

Junior developers won’t recognize a rose by any other 
name, even if it looks as pretty or smells just as sweet.

Turn knowledge work into mechanical work

For junior developers who haven’t mastered the 
fundamentals and basics, it’s imperative to break down 
their work and provide step-by-step instructions. They 
need to learn to crawl before they learn to run.

Be as explicit as possible. Perform drills, going step by 
step over setting up a class or calling a method. Ensure 
they achieve mastery over the building blocks and 
fundamentals before having them attempt anything else.

Once they begin achieving competency with their tools, 
you can move on to working with them on integrating 
their fundamentals into the larger effort.

Teach them principles and rules of thumb

As junior developers learn the basics, you can start 
explaining the “why” behind the techniques.

Explain the principles that form the foundation and 
reasoning behind what they are doing. Give them rules of 
thumb they can generally reliably follow. As they execute 
their day-to-day work, provide course-correction on where 
the principles are violated and how they can change their 
work to remediate the defects.

Over time, they will learn to apply these principles 
themselves without being told to. They’ll come to develop 
their own heuristics, which are critical to being able to 
apply what they are doing to other similar situations.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Be patient

No learning can be done without the possibility of failure. 
Accept that your junior developers will fail, or seemingly 
backslide on progress.

Act as necessary, but understand that punishing failures 
doesn’t stop them, it simply hides them. Sometimes you’ll 
have to let certain areas fail while you focus growth and 
attention on a more important area.

Failure is a part of the process of growing and learning. 
Be patient.

Know when to loosen the reins
Over time, junior developers will get better. The sort of 
managing that helped them initially will start to feel more 
constraining, dampening effectiveness and morale. It’s 
important as a lead to know when to loosen the reins and 
provide more autonomy and less supervision.

Keep a pulse of how junior developers grow and make 
progress. You can’t track what you don’t measure, so 
maintain a checklist of the traits, skills, knowledge you 
want them to demonstrate. Reward progress with more 
autonomy and trust.

Leading a team of junior developers is difficult but 
rewarding. As they learn and grow, the team will gel over 
the shared challenge and become more and more 
effective over time.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.



5Web: www.educative.io/enterpriseenterprise@educative.io |12280 NE District Way - Bellevue, WA 98005

Developing behavioral juniors

Developing behavioral juniors is the most challenging. 
Change comes from within, and asking someone to 
change their behavior can be a fool’s errand.

The behavioral junior can lack the self-awareness to 
recognize their flaws, exhibits defensiveness when 
criticized, or allows pride or ego to prevent them from 
making progress.

Pointing out behavioral flaws is also one of the hardest 
subjects for most leads to broach. People have a natural 
aversion to directly criticizing others, and a lack of control 
over emotions can turn a potential teaching moment into 
a heated argument.

Developing junior developers with behavioral traits you’d 
like to change comes down:

Changing behavior is a long-term game even in the best 
scenarios. Sometimes you won’t have the runway to wait 
for that change to occur. In these cases, it’s best to cut 
your losses.

Execution
While the best executing teams have clarity, competency, 
and control, providing a team of junior developers full 
autonomy is a recipe for disaster. It leads to poor 
decisions, which leads to broken systems and negative 
effectiveness as you work to undo the damage and pay 
down the tremendous amount of technical debt they 
generate.

As a leader it is your responsibility to give junior 
developers room to grow and potentially fail, but not room 
to sink the ship. It requires careful calibration between 
freedom and restriction. While learning can’t happen 
without mistakes and failure, it’s your job to ensure the 
mistakes junior developers make are survivable.

Develop your team
Once you’ve conducted an honest assessment of your 
team’s individual strengths and weaknesses, you can 
make plans that take their strengths and weaknesses 
into account as individuals and as a team.

Developing technical juniors

Developing technical juniors is a matter of focused, 
targeted training. The goal is to build up their knowledge 
and experience of the fundamentals until it becomes 
unconsciously known.

Develop a training program that conducts focused, 
targeted instruction on the various technical aspects of 
the role. Provide real-life examples when possible. 
Conduct drills, leverage the power of repetition, and 
ensure the fundamentals are mastered.

Developing process juniors

Developing process juniors is a matter of ensuring two 
things are understood:

Some process juniors simply don’t know a better way, 
and once exposed to it are eager to follow the process.

Other process juniors may have a difficult time following 
any process, seeing them as unnecessary friction to 
accomplishing their goals. So-called “cowboy coders”, 
they likely haven’t experienced the pain the process 
prevents.

Describing why the process exists and the consequences 
of not following the process in detail can help align their 
behaviors. If they still fail to follow the process, 
establishing checkpoints, boundaries, and penalties can 
help align behavior.

Process juniors are often a source of tremendous 
initiative. With a fresh pair of eyes, they can bring in new 
efficiencies that challenge the status quo. However, their 
idealism must be balanced by the reality of the situation. 
Ensure they can follow the existing process first and 
appreciate why it exists before allowing them to 
introduce new processes and refinements.

Some juniors encompass all of the categories, while 
others may only need work in one or two areas. These 
categories aren’t mutually exclusive, and it’s important to 
understand what kind of junior you are dealing with so 
you can appropriately alter your approach.

The technical junior

The technical junior is a person that lacks the hard 
skillsets of the industry or role. It’s a fresh college 
graduate starting their first job, or someone making a 
mid-life career change.

Technical juniors do not have familiarity with the tools, 
techniques, and skills needed to perform competently. 
They require very conscious effort to do things that may 
otherwise be simple or subconsciously perform by more 
technically experienced members. They’re unable to make 
tradeoffs and good decisions because they don’t know 
what they don’t know.

The process junior

The process junior lacks the experience and skills 
working within a team. They may not understand the 
team culture, structure, dynamics. They lack context into 
the history of the team and how the team collaborates, 
coordinates, and communicates. Working with them is an 
act of friction.

The end result is chaos for the team.

The behavioral junior

The behavioral junior has personal character or 
behavioral deficits that keep them junior, despite how 
good they may otherwise be.

They may lack the initiative to take on work after they are 
done with their current work. They may not care to learn, 
only doing the barest minimum needed to complete their 
task. They may lack follow-through or have issues 
communicating. They may not have attention-to-detail. 
They may be unable to take constructive criticism. They 
may lack drive, initiative, or good judgment.

Whatever the issue is, it prevents them from operating at 
the level they need to operate at.

Teach them when to violate the principles 
and rules of thumb

Software engineering is a context-based profession. 
Decisions that may be terrible in one circumstance can be 
the right thing to do in another. It’s important that you 
teach junior developers the various decision-making 
tradeoffs and how to make the tradeoffs themselves.

This will help avoid turning them into dogmatic engineers 
who are incapable of adapting when needed.

Provide clarity on direction 
and where they fit
If you isolate junior developers and treat them as cogs in 
a machine, you prevent them from understanding their 
ultimate role in the project.

Without understanding their place in the bigger picture, 
they will become perpetual juniors, merely carrying out 
tasks and incapable of executing anything beyond simple, 
explicit instructions.

This may have been the end goal of Taylorist 
management, but the world has evolved in complexity 
since the philosophy’s heyday. Today, the best teams have 
the ability to adapt to a constantly changing environment.

The only way a team can adapt is if its members have a 
holistic view of the situation.

You don’t want junior developers staying junior forever.

Teach them their role

Explain to them the other moving parts in terms they can 
understand. Paint a picture of how their contribution (or 
lack thereof) impacts the overall goals and initiatives of 
the project and organization.

As junior developers improve, their understanding of their 
role will help guide them as they take on increasing 
amounts of responsibility. These guide-rails will focus 
their efforts on the things that matter and help ensure 
they execute within the constraints that makes sense for 
the team and organization.

Supervise
It’s not enough to set the pieces and press “play”. Good 
execution requires supervision. Course-correction and 
pointing out just-in-time lessons are valuable learning 
opportunities that leaders need to provide to junior 
developers.

Frequently check-in

Monitor progress and check in frequently with your junior 
developers on their growth. Constantly assess where they 
are and ensure they are making progress. Check progress 
against goals and milestones.

Provide them resources they need to learn — whether that 
be training materials, larger challenges, or your own time.

Ensure they know where they stand and where they are 
expected to be, and have the roadmap to get there.

Ensure there’s a process

Junior developers don’t do well when given an infinite 
amount of possibilities, and a tremendous amount of 
damage can be done over time if you leave them to their 
own devices.

Limit potential damage by ensuring that there’s a gated 
process where you have final authority. Ensure that 
there’s a code review process in place. Only allow 
deployments that you approve.

If your developers have trouble following the process, 
enforce it with technical solutions or management 
penalties.

These processes can be lifted as your junior developers 
grow and improve, but until then they act as safety nets 
that prevent harm to themselves and the business.

Give feedback often

Junior developers thrive when given feedback. They need 
this constant course correction, both to ensure they don’t 
sink the ship and to ensure they are learning the right 
things. Over time, they can begin giving themselves this 
feedback, providing them the ability to self-regulate once 
they are capable of doing so. This will ultimately ease the 
burden on you as a manager or lead.

Set goals

Focus and effective execution requires a goal or objective 
to work towards.

Work with your team to set attainable goals at regular 
intervals. These goals should be larger goals your team 
works towards, as well as individual goals that contribute 
to the main effort. By having your team work with you on 
deciding these goals, it improves their buy-in and 
motivation, increasing engagement.

Ensure you also establish milestones and interim goals 
that can serve as progress markers and checkpoints to 
determine whether the entire effort is on track and where 
attention may be needed.

These act as yellow flags and early warning signs of 
potential issues that need to be addressed.

Set boundaries

It’s not enough to set goals — goals can be achieved in 
many ways, some highly negative and damaging, 
especially if the junior developer hasn’t yet developed 
proper judgement. It’s important to ensure that 
boundaries are explicitly clarified and understood by the 
entire team.

Boundaries can be situation-specific things like “never use 
single-letter variables” to generalized value-based 
boundaries like “never make a customer feel bad”.

These boundaries act as anti-goals, things that should 
not be done, and are important in establishing what is 
accepted and not accepted behavior. Norm-setting is 
important in creating alignment and clarity, and without it 
you can end up with a team that achieves its goals, but in 
a chaotic and destructive way.

As your junior developers improve their judgement and 
prove credibility, you can start lifting boundaries and 
widening their area of operation.

Upload internal documentation
Schedule tasks and meetings
Assign mentors
Add Educative courses
Monitor individual progress

Upload internal documentation
Schedule tasks and meetings
Assign mentors
Add Educative courses
Monitor individual progress

Front-load decision-making
Junior developers by definition don’t have the clarity or 
competency to utilize good judgement when they make 
decisions. It’s important to ensure that major decisions, 
such as architecture, technologies, and patterns, are not 
initially in their purview.

This means that when starting a new feature or module, 
make the major decisions ahead of time. They should be 
working within a framework of established patterns, 
practices, architectures, technologies, and procedures. If 
this doctrine doesn’t exist, create it.

Ensure this framework exists before they reach the point 
where they have to make these decisions themselves. 
Train them on the patterns and practices. Create 
component libraries. Demonstrate the way you want the 
system built.

Front-loading major decisions has the added benefit of 
helping junior developers avoid decision fatigue. They 
avoid making decisions they don’t have the competency 
or clarity to make, and focus their decision-making at the 
micro-level that they are gaining mastery over: naming, 
variables, etc.

Making the major decisions doesn’t mean completely 
shutting off a junior developer’s viewpoint or voice. Junior 
developers can introduce new ideas and help keep your 
organization from becoming an antiquated dinosaur. 
However, balance their new ideas with the risks and 
realities of your organization.

Give them visibility into the thought processes behind 
your decisions so they can build up their own ability to 
judge trade-offs. Ask for their input, but ensure that the 
final decision itself remains with you.

By front-loading the decisions before they reach the 
decision-point, it helps focus junior developers during 
execution.

Break it down, barney style
Junior developers may have knowledge of individual 
pieces, but lack the intuition and experience that allows 
them to apply their pattern-recognition skills to other 
situations. As a result, they’re unable to rapidly move 
outside their areas of comfort and knowledge, even if the 
work is very similar.

Junior developers won’t recognize a rose by any other 
name, even if it looks as pretty or smells just as sweet.

Turn knowledge work into mechanical work

For junior developers who haven’t mastered the 
fundamentals and basics, it’s imperative to break down 
their work and provide step-by-step instructions. They 
need to learn to crawl before they learn to run.

Be as explicit as possible. Perform drills, going step by 
step over setting up a class or calling a method. Ensure 
they achieve mastery over the building blocks and 
fundamentals before having them attempt anything else.

Once they begin achieving competency with their tools, 
you can move on to working with them on integrating 
their fundamentals into the larger effort.

Teach them principles and rules of thumb

As junior developers learn the basics, you can start 
explaining the “why” behind the techniques.

Explain the principles that form the foundation and 
reasoning behind what they are doing. Give them rules of 
thumb they can generally reliably follow. As they execute 
their day-to-day work, provide course-correction on where 
the principles are violated and how they can change their 
work to remediate the defects.

Over time, they will learn to apply these principles 
themselves without being told to. They’ll come to develop 
their own heuristics, which are critical to being able to 
apply what they are doing to other similar situations.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Be patient

No learning can be done without the possibility of failure. 
Accept that your junior developers will fail, or seemingly 
backslide on progress.

Act as necessary, but understand that punishing failures 
doesn’t stop them, it simply hides them. Sometimes you’ll 
have to let certain areas fail while you focus growth and 
attention on a more important area.

Failure is a part of the process of growing and learning. 
Be patient.

Know when to loosen the reins
Over time, junior developers will get better. The sort of 
managing that helped them initially will start to feel more 
constraining, dampening effectiveness and morale. It’s 
important as a lead to know when to loosen the reins and 
provide more autonomy and less supervision.

Keep a pulse of how junior developers grow and make 
progress. You can’t track what you don’t measure, so 
maintain a checklist of the traits, skills, knowledge you 
want them to demonstrate. Reward progress with more 
autonomy and trust.

Leading a team of junior developers is difficult but 
rewarding. As they learn and grow, the team will gel over 
the shared challenge and become more and more 
effective over time.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.



6Web: www.educative.io/enterpriseenterprise@educative.io |12280 NE District Way - Bellevue, WA 98005

Developing behavioral juniors

Developing behavioral juniors is the most challenging. 
Change comes from within, and asking someone to 
change their behavior can be a fool’s errand.

The behavioral junior can lack the self-awareness to 
recognize their flaws, exhibits defensiveness when 
criticized, or allows pride or ego to prevent them from 
making progress.

Pointing out behavioral flaws is also one of the hardest 
subjects for most leads to broach. People have a natural 
aversion to directly criticizing others, and a lack of control 
over emotions can turn a potential teaching moment into 
a heated argument.

Developing junior developers with behavioral traits you’d 
like to change comes down:

Changing behavior is a long-term game even in the best 
scenarios. Sometimes you won’t have the runway to wait 
for that change to occur. In these cases, it’s best to cut 
your losses.

Execution
While the best executing teams have clarity, competency, 
and control, providing a team of junior developers full 
autonomy is a recipe for disaster. It leads to poor 
decisions, which leads to broken systems and negative 
effectiveness as you work to undo the damage and pay 
down the tremendous amount of technical debt they 
generate.

As a leader it is your responsibility to give junior 
developers room to grow and potentially fail, but not room 
to sink the ship. It requires careful calibration between 
freedom and restriction. While learning can’t happen 
without mistakes and failure, it’s your job to ensure the 
mistakes junior developers make are survivable.

Develop your team
Once you’ve conducted an honest assessment of your 
team’s individual strengths and weaknesses, you can 
make plans that take their strengths and weaknesses 
into account as individuals and as a team.

Developing technical juniors

Developing technical juniors is a matter of focused, 
targeted training. The goal is to build up their knowledge 
and experience of the fundamentals until it becomes 
unconsciously known.

Develop a training program that conducts focused, 
targeted instruction on the various technical aspects of 
the role. Provide real-life examples when possible. 
Conduct drills, leverage the power of repetition, and 
ensure the fundamentals are mastered.

Developing process juniors

Developing process juniors is a matter of ensuring two 
things are understood:

Some process juniors simply don’t know a better way, 
and once exposed to it are eager to follow the process.

Other process juniors may have a difficult time following 
any process, seeing them as unnecessary friction to 
accomplishing their goals. So-called “cowboy coders”, 
they likely haven’t experienced the pain the process 
prevents.

Describing why the process exists and the consequences 
of not following the process in detail can help align their 
behaviors. If they still fail to follow the process, 
establishing checkpoints, boundaries, and penalties can 
help align behavior.

Process juniors are often a source of tremendous 
initiative. With a fresh pair of eyes, they can bring in new 
efficiencies that challenge the status quo. However, their 
idealism must be balanced by the reality of the situation. 
Ensure they can follow the existing process first and 
appreciate why it exists before allowing them to 
introduce new processes and refinements.

Some juniors encompass all of the categories, while 
others may only need work in one or two areas. These 
categories aren’t mutually exclusive, and it’s important to 
understand what kind of junior you are dealing with so 
you can appropriately alter your approach.

The technical junior

The technical junior is a person that lacks the hard 
skillsets of the industry or role. It’s a fresh college 
graduate starting their first job, or someone making a 
mid-life career change.

Technical juniors do not have familiarity with the tools, 
techniques, and skills needed to perform competently. 
They require very conscious effort to do things that may 
otherwise be simple or subconsciously perform by more 
technically experienced members. They’re unable to make 
tradeoffs and good decisions because they don’t know 
what they don’t know.

The process junior

The process junior lacks the experience and skills 
working within a team. They may not understand the 
team culture, structure, dynamics. They lack context into 
the history of the team and how the team collaborates, 
coordinates, and communicates. Working with them is an 
act of friction.

The end result is chaos for the team.

The behavioral junior

The behavioral junior has personal character or 
behavioral deficits that keep them junior, despite how 
good they may otherwise be.

They may lack the initiative to take on work after they are 
done with their current work. They may not care to learn, 
only doing the barest minimum needed to complete their 
task. They may lack follow-through or have issues 
communicating. They may not have attention-to-detail. 
They may be unable to take constructive criticism. They 
may lack drive, initiative, or good judgment.

Whatever the issue is, it prevents them from operating at 
the level they need to operate at.

Teach them when to violate the principles 
and rules of thumb

Software engineering is a context-based profession. 
Decisions that may be terrible in one circumstance can be 
the right thing to do in another. It’s important that you 
teach junior developers the various decision-making 
tradeoffs and how to make the tradeoffs themselves.

This will help avoid turning them into dogmatic engineers 
who are incapable of adapting when needed.

Provide clarity on direction 
and where they fit
If you isolate junior developers and treat them as cogs in 
a machine, you prevent them from understanding their 
ultimate role in the project.

Without understanding their place in the bigger picture, 
they will become perpetual juniors, merely carrying out 
tasks and incapable of executing anything beyond simple, 
explicit instructions.

This may have been the end goal of Taylorist 
management, but the world has evolved in complexity 
since the philosophy’s heyday. Today, the best teams have 
the ability to adapt to a constantly changing environment.

The only way a team can adapt is if its members have a 
holistic view of the situation.

You don’t want junior developers staying junior forever.

Teach them their role

Explain to them the other moving parts in terms they can 
understand. Paint a picture of how their contribution (or 
lack thereof) impacts the overall goals and initiatives of 
the project and organization.

As junior developers improve, their understanding of their 
role will help guide them as they take on increasing 
amounts of responsibility. These guide-rails will focus 
their efforts on the things that matter and help ensure 
they execute within the constraints that makes sense for 
the team and organization.

Upload internal documentation
Schedule tasks and meetings
Assign mentors
Add Educative courses
Monitor individual progress

Upload internal documentation
Schedule tasks and meetings
Assign mentors
Add Educative courses
Monitor individual progress

Supervise
It’s not enough to set the pieces and press “play”. Good 
execution requires supervision. Course-correction and 
pointing out just-in-time lessons are valuable learning 
opportunities that leaders need to provide to junior 
developers.

Frequently check-in

Monitor progress and check in frequently with your junior 
developers on their growth. Constantly assess where they 
are and ensure they are making progress. Check progress 
against goals and milestones.

Provide them resources they need to learn — whether that 
be training materials, larger challenges, or your own time.

Ensure they know where they stand and where they are 
expected to be, and have the roadmap to get there.

Ensure there’s a process

Junior developers don’t do well when given an infinite 
amount of possibilities, and a tremendous amount of 
damage can be done over time if you leave them to their 
own devices.

Limit potential damage by ensuring that there’s a gated 
process where you have final authority. Ensure that 
there’s a code review process in place. Only allow 
deployments that you approve.

If your developers have trouble following the process, 
enforce it with technical solutions or management 
penalties.

These processes can be lifted as your junior developers 
grow and improve, but until then they act as safety nets 
that prevent harm to themselves and the business.

Give feedback often

Junior developers thrive when given feedback. They need 
this constant course correction, both to ensure they don’t 
sink the ship and to ensure they are learning the right 
things. Over time, they can begin giving themselves this 
feedback, providing them the ability to self-regulate once 
they are capable of doing so. This will ultimately ease the 
burden on you as a manager or lead.

Set goals

Focus and effective execution requires a goal or objective 
to work towards.

Work with your team to set attainable goals at regular 
intervals. These goals should be larger goals your team 
works towards, as well as individual goals that contribute 
to the main effort. By having your team work with you on 
deciding these goals, it improves their buy-in and 
motivation, increasing engagement.

Ensure you also establish milestones and interim goals 
that can serve as progress markers and checkpoints to 
determine whether the entire effort is on track and where 
attention may be needed.

These act as yellow flags and early warning signs of 
potential issues that need to be addressed.

Set boundaries

It’s not enough to set goals — goals can be achieved in 
many ways, some highly negative and damaging, 
especially if the junior developer hasn’t yet developed 
proper judgement. It’s important to ensure that 
boundaries are explicitly clarified and understood by the 
entire team.

Boundaries can be situation-specific things like “never use 
single-letter variables” to generalized value-based 
boundaries like “never make a customer feel bad”.

These boundaries act as anti-goals, things that should 
not be done, and are important in establishing what is 
accepted and not accepted behavior. Norm-setting is 
important in creating alignment and clarity, and without it 
you can end up with a team that achieves its goals, but in 
a chaotic and destructive way.

As your junior developers improve their judgement and 
prove credibility, you can start lifting boundaries and 
widening their area of operation.

Front-load decision-making
Junior developers by definition don’t have the clarity or 
competency to utilize good judgement when they make 
decisions. It’s important to ensure that major decisions, 
such as architecture, technologies, and patterns, are not 
initially in their purview.

This means that when starting a new feature or module, 
make the major decisions ahead of time. They should be 
working within a framework of established patterns, 
practices, architectures, technologies, and procedures. If 
this doctrine doesn’t exist, create it.

Ensure this framework exists before they reach the point 
where they have to make these decisions themselves. 
Train them on the patterns and practices. Create 
component libraries. Demonstrate the way you want the 
system built.

Front-loading major decisions has the added benefit of 
helping junior developers avoid decision fatigue. They 
avoid making decisions they don’t have the competency 
or clarity to make, and focus their decision-making at the 
micro-level that they are gaining mastery over: naming, 
variables, etc.

Making the major decisions doesn’t mean completely 
shutting off a junior developer’s viewpoint or voice. Junior 
developers can introduce new ideas and help keep your 
organization from becoming an antiquated dinosaur. 
However, balance their new ideas with the risks and 
realities of your organization.

Give them visibility into the thought processes behind 
your decisions so they can build up their own ability to 
judge trade-offs. Ask for their input, but ensure that the 
final decision itself remains with you.

By front-loading the decisions before they reach the 
decision-point, it helps focus junior developers during 
execution.

Break it down, barney style
Junior developers may have knowledge of individual 
pieces, but lack the intuition and experience that allows 
them to apply their pattern-recognition skills to other 
situations. As a result, they’re unable to rapidly move 
outside their areas of comfort and knowledge, even if the 
work is very similar.

Junior developers won’t recognize a rose by any other 
name, even if it looks as pretty or smells just as sweet.

Turn knowledge work into mechanical work

For junior developers who haven’t mastered the 
fundamentals and basics, it’s imperative to break down 
their work and provide step-by-step instructions. They 
need to learn to crawl before they learn to run.

Be as explicit as possible. Perform drills, going step by 
step over setting up a class or calling a method. Ensure 
they achieve mastery over the building blocks and 
fundamentals before having them attempt anything else.

Once they begin achieving competency with their tools, 
you can move on to working with them on integrating 
their fundamentals into the larger effort.

Teach them principles and rules of thumb

As junior developers learn the basics, you can start 
explaining the “why” behind the techniques.

Explain the principles that form the foundation and 
reasoning behind what they are doing. Give them rules of 
thumb they can generally reliably follow. As they execute 
their day-to-day work, provide course-correction on where 
the principles are violated and how they can change their 
work to remediate the defects.

Over time, they will learn to apply these principles 
themselves without being told to. They’ll come to develop 
their own heuristics, which are critical to being able to 
apply what they are doing to other similar situations.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.

Be patient

No learning can be done without the possibility of failure. 
Accept that your junior developers will fail, or seemingly 
backslide on progress.

Act as necessary, but understand that punishing failures 
doesn’t stop them, it simply hides them. Sometimes you’ll 
have to let certain areas fail while you focus growth and 
attention on a more important area.

Failure is a part of the process of growing and learning. 
Be patient.

Know when to loosen the reins
Over time, junior developers will get better. The sort of 
managing that helped them initially will start to feel more 
constraining, dampening effectiveness and morale. It’s 
important as a lead to know when to loosen the reins and 
provide more autonomy and less supervision.

Keep a pulse of how junior developers grow and make 
progress. You can’t track what you don’t measure, so 
maintain a checklist of the traits, skills, knowledge you 
want them to demonstrate. Reward progress with more 
autonomy and trust.

Leading a team of junior developers is difficult but 
rewarding. As they learn and grow, the team will gel over 
the shared challenge and become more and more 
effective over time.

Use 1:1 meetings with them effectively, ensuring that they 
know exactly where they stand in their professional 
development and performance. Point out areas in 
conversations where they can improve and where they 
are making good progress.


